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Abstract 

 Breast ultrasound has long been one the most preferred modalities of breast cancer detection 

due to its relatively low cost, ease of access, and noninvasive nature. Advancements in imaging 

technology and improvements in technique and standardization have led to corresponding increases in 

accuracy, but the potential for an additional boost exists from the application of artificial intelligence 

and machine learning. This paper explores how the potential of a quantitative model and associated 

machine learning prediction can assist radiologists currently using what is primarily a qualitative model 

to assign a BI-RADS score and characterize breast lesions as benign or malignant. The steps taken involve 

having an expert radiologist annotate a publicly available data set of 135 breast ultrasound images 

according to an established rubric, using image processing techniques to convert certain highly 

predictive features of that rubric to a numerical representation, and then feeding that quantitative 

representation into a machine learning model to predict malignancy of a validation set of images. The 

resulting model confirms that not only were lesion shape and circumscription important features for 

classification, but so was internal echotexture, which is much more difficult to differentiate to the naked 

eye. The model will be used to classify future larger data sets provided by our client, either in its current 

manifestation or after retraining on a subset of those new images. 

 Keywords: Breast cancer, breast ultrasound, machine learning, radiomics, computer-aided 

diagnosis 
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Chapter 1: Introduction 

1.1 Background 

Breast cancer is the most diagnosed cancer among women in the United States, and is now the 

most common cancer worldwide, accounting for about 12% of all new cancer cases. Though death rates 

have been dropping, about 43,000 women in the U.S. are expected to die from breast cancer in 2021 

(Breastcancer.org, n.d.). As with many cancers, early detection and diagnosis is vital in managing the 

disease. When the cancer is localized (no sign of spread outside the breast), the 5-year survival rate is as 

high as 99%. 

Along with routine mammograms and physical exams, breast ultrasound (BUS) is one of the 

tools used in breast imaging to help detect and diagnose abnormalities in breast tissue. Often, the 

procedure is used as a safe and noninvasive next step when something suspicious is found during a 

physical exam, mammogram, or breast MRI. Sound waves are sent through the skin to produce in image 

of the internal tissue and structure, allowing the physician to determine whether an abnormality is solid 

(non-cancerous lump or cancerous tumor), filled with fluid (for example, a benign cyst), or both cystic 

and solid.  

The project described below is part of a joint effort between The Mayo Clinic and researchers at 

the University of Wisconsin-La Crosse. The Mayo Clinic is a large nonprofit hospital system with major 

campuses in Minnesota, Arizona, and Florida. The Mayo Clinic Health System, founded in 1992, consists 

of hospitals, clinics, and medical service centers throughout Minnesota, Iowa, and Wisconsin. Their 

mission is to provide the highest quality care to every patient through integrated clinical practice, 

education, and research. They serve more than 1.3 million patients every year from all 50 states and 140 

countries (Mayo Clinic, n.d.).  



1.2 Terminology 

BI-RADS is an acronym for Breast Imaging Reporting and Data System. It is a numerical scoring 

system running from 0 to 6 that helps radiologists communicate the level of abnormality in a breast 

image (mammogram, ultrasound, or breast MRI). In order to assign a BI-RADS score, the radiologist will 

consider various characteristics of the BUS image: 

• Tissue Composition 

• Shape, orientation, margin, echo pattern, and posterior features of any masses 

• Calcifications 

• Associated features, such as architectural distortion, duct changes, vascularity, and elasticity 

• Special cases such as type of cyst, lymph nodes, mass location, fat necrosis, and postsurgical 

fluid collection 

• Other factors such as a patient’s medical history, age, and the size of any masses.  

The assessment categories are as follows: 

Table 1: BI-RADS Classification System (DocPanel, n.d.) 

Score Category Recommended Action Likelihood of Cancer 

0 Incomplete Need additional imaging to 
evaluate 

N/A 

1 Negative Continue routine annual 
screening 

0% 

2 Benign Continue routine annual 
screening 

0% 

3 Probably Benign Short interval follow-up 
suggested (6 months) 

<2% probability of malignancy 

4 Suspicious for Malignancy Biopsy 4A: Low suspicion (2-9%) 
4B: Moderate suspicion (10-49%) 
4C: High suspicion (50-94%) 

5 Highly suggestive of 
malignancy 

Biopsy >95% probability of malignancy 

6 Known biopsy proven 
malignancy 

Confirmed biopsy and 
treatment planning 

Proven malignancy 

 



1.3 Statement of Problem 

Our client contact has stated that the positive biopsy rate across the Mayo Clinic Enterprise for 

breast ultrasound lesions ranged from 31% to 51% between January 1, 2019, and November 1, 2020. 

This broad range indicates non-uniform patient management and an opportunity to introduce improved 

organizational standards. A low positive biopsy rate is an indication of low specificity, and our contact 

believes the introduction of computer assistance would both reduce the discrepancy across the 

enterprise and increase specificity and sensitivity. 

While there is broad consensus among radiologists on BUS images having a BI-RADS score of 1, 

2, or 5 (clearly benign or clearly malignant), there are widely differing interpretations between BI-RADS 

3 and 4, particularly between BI-RADS 3 and 4A. The distinction is important, as it is the difference 

between a biopsy and short interval follow-up. Correctly classifying a lesion as a 3 instead of a 4A 

eliminates an unnecessary medical procedure, reduces cost, and spares the patient the psychological 

impact of a benign breast biopsy (Andrykowski, et al., 2002). Conversely, accurately identifying a 

malignant lesion as 4A instead of 3, with an associated positive biopsy, offers the patient more 

opportunity and time to fight the cancer. 

1.4 Conceptual Framework 

Computer-aided diagnosis (CAD) can be employed to aid radiologists as they attempt to characterize 

indeterminate breast lesions in ultrasound images. Researchers have taken two analytical approaches in 

designing models to assist with this task: 

1. Image processing – In this approach, the system is trained to look for the same morphological 

and texture features as a radiologist would, such as lesion shape, orientation, margins, texture, 

and vascularity. Daoud et al. (2016) present a model which quantifies the morphology of a 

breast tumor and then analyzes the texture by breaking the image up into many small regions of 



interest (ROI). They conclude that this hybrid ensemble is better able to predict malignancy than 

either feature alone, and at a very high accuracy overall. 

2. Deep learning – Recent advances in deep learning and increased access to computing power 

have allowed improved object detection and classification of breast ultrasound images. Cao et 

al. (2019) evaluate various convolutional neural network (CNN) algorithms and concluded that 

SSD300 performed best for detecting lesions and ImageNet and DenseNet were best at lesion 

classification. 

Each analytical approach offers benefits that the other does not. Due to the presence of noise, 

shadowing, and variation in echo patterns in surrounding tissue, a well-trained deep learning model is 

often better suited for isolating a ROI than traditional image processing. Because deep learning is like a 

black box, however, it does not necessarily leave a lot of room for manual overrides by the physician 

analyzing the image. Image processing can therefore provide better interpretability.  

In the interactive system we envision, the radiologist will be presented with both an image and the 

various BI-RADS features identified by the hybrid model, with the opportunity to manually override any 

of them. The expectation is that synthesizing an image processing model and a deep learning model will 

improve the overall accuracy, particularly for the borderline cases that often prove difficult for 

radiologists. 

1.5 Research Objective 

The overarching objective of this research is to be able to develop one of the best breast 

ultrasound CAD systems by improving the accuracy of indeterminate lesion classification. If successful, it 

has the potential to raise the standard of care across the Mayo Clinic enterprise, improve patient 

management and outcomes, and reduce medical costs. 



A secondary objective is trying to find whether there is a more optimal combination of artificial 

intelligence and human expertise than is currently in practice. Romeo, et al. (2021) recently published a 

similar study that exhibits the potential for improvement in this domain. For reasons of patient privacy 

and data ownership, much of the research in CAD for breast ultrasound has involved relatively small 

datasets consisting of a few hundred images or less, of varying quality. Training the CAD system by 

annotating images is also relatively labor intensive and requires a significant time commitment of expert 

radiologists. This project overcomes those limitations as much as possible potentially providing access to 

thousands of high-quality images from the Mayo system and an experienced radiologist who is one of 

the principal investigators with a strong motivation to see it succeed. 

1.6 Organization of the Project 

The project will consist of four discrete phases: 

1. Acquisition and pre-processing of images 

2. Model Generation 

a. Automated CAD using image processing techniques 

b. Automated CAD using deep learning techniques 

3. Synthesis of models 

4. Development of GUI 

1.7 Practical Limitations 

While the above sections detail the overall scope of the project, most of the rest of this paper 

will only deal with the part of the project for which I am most directly involved and responsible. 

Specifically, the research team has been divided into two groups, one focused on deep learning and the 

other on image processing. I am part of the latter group and so my analysis will be limited to the 

techniques, methodology, results, and discussion as it pertains to image processing. 



Lastly, because the timeline of this project extends beyond the due date of this paper, my 

analysis will include only phases 1 and 2 of the project (acquisition/pre-processing of images and image 

processing model generation). 

Chapter 2: Literature Review 

2.1 Introduction 

  Breast ultrasound (BUS) has long been one of the most common and well-studied techniques in 

the early detection of breast cancer. Its noninvasive nature, low cost, and portability are major 

advantages over other screening technique. Sood, et al. (2019) performed one of the larger meta-

analyses consisting of 26 studies and found that overall pooled sensitivity was 80.1% and specificity was 

88.4%. These numbers suggest that BUS is an effective tool for detecting malignant lesions while 

simultaneously leaving some room for improvement.  

 The literature review chapter will be divided into three sections: (1) Image Segmentation, (2) 

Image Classification, and (3) Radiomics. Though image segmentation is not the primary focus of our 

report, it is an important prerequisite that impacts the ability of the classification algorithm to 

accurately predict malignancy and thus it warrants a brief overview. 

2.2 Image Segmentation 

 Advances in image processing technology have allowed researchers to apply techniques from 

other domains toward automatically identifying a region of interest (ROI) on a BUS image. Accurately 

establishing the boundaries of the region of interest is a crucial first step in further analysis, because the 

type of lesion margins are one of the key indicators of malignancy. Compared with other imaging 

modalities, BUS image segmentation is particularly challenging because (1) ultrasound images have very 

low quality due to speckle noise, low contrast, low sign noise ratio, and artifacts; (2) there are large 



variations of breast structures between patients, making it difficult to standardize; and (3) strong priors 

based on tumor shape, size, and echo strength are important for segmentation in other imaging 

modalities, but are difficult to apply to BUS image segmentation (Xian, et al., 2018). Approaches to 

segmentation fall into roughly two categories: classic image processing techniques (thresholding, region 

growing, and watershed), and more computationally advanced techniques (graph-based, learning-

based, and deformable models). 

Figure 1: Distribution of automatic BUS image segmentation approaches (Xian, et al., 2018) 

 

 In their study, Xu, et al. (2019) discuss how the supervised or manual segmentation methods 

discussed above are mainly subject to limitations of the quality of the image. Techniques that are 

effective at segmenting some images will fail on others due to inherent artifacts and noise, attenuation, 

blurry boundaries, and intensity inhomogeneity. Consequently, the results of traditional methods must 

be “hand-crafted and experience-determined,” requiring more intervention from the subject matter 

experts than is ideal. Using convolutional neural networks (deep learning), the team of researchers 

found that performance was roughly 10% better than traditional methods, with accuracy, precision, 

recall, and F1 score all exceeding 80%. In general, the vast majority of BUS image segmentation research 

in the last two or three years has focused on a deep learning approach. Our group has adopted this as 

well, but for the purposes of the classification sub-project, we will be using manually segmented and 

annotated BUS images. 



2.3 Image Classification 

As discussed earlier, the BI-RADS score was created to quantify the risk of a lesion for a given 

case.  The first edition of BI-RADS was introduced in 1993 for mammography but it was not until the 

fourth edition was released in 2003 that advice for ultrasound was included. This version included 

language more specific to sonography meant to avoid the ambiguity that had existed up until that point. 

A team of researchers concluded that the newly updated BI-RADS for ultrasound was at least as 

accurate at lesion classification as BI-RADS for mammography (Heinig, Witteler, Schmitz, Kiesel, & 

Steinhard, 2008). 

While a lesion is ultimately either malignant or benign, BI-RADS provides physicians with the 

ability to assign a likelihood of malignancy based on various predictive features. Hong, et al. (2005) 

studied 403 solid lesions to determine the positive and negative predictive values of different ultrasound 

features from the BI-RADS lexicon and the results are shown in Table 1. Their conclusions show the 

relative risk contributions of the three major features that make up the BI-RADS score: margins, shape, 

and orientation, but notably do not discuss echo pattern/echotexture, which is another important 

predictor.  

Table 2: Negative and Positive Predictive Values of US Features 

Predictor Group and US Descriptor Feature Predictive Value (%) 

Negative Predictors 

Oval Shape NPV = 84 

Circumscribed margins NPV = 90 

Parallel orientation NPV = 78 

Positive Predictors 

Irregular shape PPV = 62 

Spiculated margins PPV = 86 

Nonparallel orientation PPV = 69 

 

Different physicians will naturally have different opinions of these features. A 2006 study found 

substantial agreement for lesion orientation, shape, and boundary (κ = 0.61, 0.66, and 0.69, 



respectively), moderate agreement for lesion margin and posterior acoustic features (κ = 0.40 for both), 

and fair agreement on lesion echo pattern (κ = 0.29) (Lazarus, Mainiero, Schepps, Koelliker, & Livingston, 

2006).  

Raza, et al. (2010) considered some of the reasons and ramifications of these differing 

interpretations. They posited that some of the variability was likely due to operator technique while 

much of it might be due to the level of training or experience of the radiologist or confusion about the 

BI-RADS lexicon. To address this, they presented several illustrative cases, providing the imagery and 

matching it up with the associated lexicon. Particular attention was paid to the most challenging 

circumstances, such as when age or previous medical history of the patient might lead the score to be 

different than it might otherwise be. 

Daoud, et al. (2016) devised an approach which they termed “fused multiple-ROI texture 

analysis and morphological analysis” which seems very promising. Whereas BI-RADS puts particular 

importance on how well-circumscribed a lesion’s margins are, this technique was able to achieve high 

accuracy by considering shape and texture in tandem. Because it is focused on classification rather than 

segmentation, they began by having a trained radiologist manually outline a region of interest. For the 

texture component, they divided the ROI into a grid of many smaller regions of interest, and then 

extracted twenty different texture features at varying distances and orientations. In terms of shape, 

they extracted ten different features directly from the tumor, six more from the best-fitting ellipse of 

the tumor, and two more from the normalized radial length (NRL) of the tumor. Though these 

researchers did not use the term directly, their overall technique dovetails very well into the next 

section which discusses radiomics. Table 3 highlights the additional accuracy gained by the fused 

approach of multiple ROI and morphology. 



Table 3: Performance improvements from texture and morphological analysis 

Performance metrics obtained using the (a) conventional classification approach using texture 
features, (b) conventional classification approach using morphological features, (c) conventional 
classification approach using both texture and morphological features, (d) proposed classification 
approach using multiple-ROI texture analysis, and (e) proposed classification approach using the fused 
multiple-ROI texture analysis and morphological analysis 

 (a) (b) (c) (d) (e) 

Accuracy 85.5% 87.6% 90.9% 95.5% 98.2% 

Specificity 84.4% 89.4% 90.6% 93.8% 98.4% 

Sensitivity 87.0% 84.8% 91.3% 97.8% 97.8% 

PPV 80.0% 84.8% 87.5% 91.8% 97.8% 

NPV 90.0% 89.1% 93.6% 98.4% 98.4% 

 

While the results seem very favorable, we cannot overlook the fact that this study, like many of 

the studies discussed here, employs only a very small data set of 110 tumor images (64 benign and 46 

malignant). Such a limited data set raises questions of generalizability and overfitting.  

2.4 Radiomics 

 An emerging field of research known as radiomics attempts to aid clinical decision-making and 

outcome prediction by making use of quantitative features mathematically extracted from clinical 

images (Rizzo, et al., 2018). As it pertains to BUS image processing, it has the potential to improve both 

image segmentation and image classification by removing some of the human bias and difficulty in 

quantifying or characterizing the pixels in an ultrasound image without the aid of software. For example, 

while a computer program can accurately and consistently measure the homogeneity of pixel intensity 

or echotexture within a lesion boundary, expert radiologists are often not able to reach a consensus. In 

addition to quantifying the shape features (morphology) of a region of interest, radiomics offers first-

order statistics features (mean, median, asymmetry, flatness, uniformity, randomness, etc.), second 

order-order statistics features (inter-relationships between pixels, such as homogeneity metrics), and 

higher-order statistics features (e.g. transforms and fractal analysis). 



 A large team of researchers studied the use of radiomics applied to breast ultrasound and found 

promising results for differentiating benign and malignant lesions (Romeo, et al., 2021). The study was 

retrospective in nature and used 135 lesions from one institution to train a radiomics model and then 

tested the model on 66 lesions from a different institution. Among the goals of the study were to 

evaluate the accuracy of a radiomics approach paired with machine learning (ML), compare them with 

the diagnostic accuracy of an expert radiologist, and then determine if the performance of the 

radiologist could be improved by providing them with the ML learning output. The findings were that 

the radiomic-based ML model was able to achieve comparable accuracy to the radiologist (ML: 82%, 

Radiologist: 79.4%) with high sensitivity (93%) but low specificity (57%). When given the ML model, the 

performance of the radiologist improved slightly but not significantly, to 80.2% accuracy. 

 Despite the tremendous promise of radiomics for both image segmentation and image 

classification, it is important to note that it is a relatively new approach and comes with a few potential 

pitfalls. Reproducibility has proven to be challenging due to lack of standardization, insufficient 

reporting, or limited open source code or data. It also suffers from a difficulty of interpretability of 

results (correlation vs. causation), leading it to be less trusted in decision-support systems. Lastly, most 

of the studies have been retrospective rather than prospective, meaning that a radiomic approach has 

not always been able to prove its predictive ability (van Timmeren, Cester, Tanadini-Lang, Alkadhi, & 

Baessler, 2020). 

2.5 Summary 

 Given the nature of the data available at the time of this writing, which consists of a manually 

segmented data set of 163 images with BI-RADS scores, annotations, and predicted malignancy, the 

logical next step involves applying radiomics and machine learning techniques to see if it is possible to 



improve upon the predictions of the subject-matter expert. The methodology, results, and conclusions 

will thus all be geared toward this specific part of the project. 

Chapter 3: Data Collection and Methodology 

3.1 Overall Strategy 

 At the outset of the project, the goal was to produce one or more models that were capable of 

predicting whether a lesion was benign or malignant while conveying the model’s confidence, in order 

to assist the radiologist in borderline or otherwise tricky cases. The vision for the final product allows the 

radiologist to manually override any of the features identified by the model and have the probability of 

malignancy and confidence intervals update accordingly. Therefore, it was important for our approach 

to mirror as much as possible the methodology of the radiologist. Early on, we received a lot of feedback 

from our subject matter expert as we learned to see what he is able to see in an ultrasound image. The 

middle phase consisted of building algorithms so our software could detect the sorts of features that a 

trained radiologist would use as clues to detect malignancy, and the last phase was the machine learning 

component -- taking those features, training a model, and using it to predict malignancy on new 

ultrasound images. 

 Initially, we attempted to build a machine learning model to predict either BI-RADS score or 

malignancy using only the qualitative descriptors provided by Dr. Ellis. However, it quickly became 

apparent that there was not enough variety or balance in these features for this particular data set. 

Many of the descriptors were not used at all, and even among those that were used, many only showed 

up on only a handful of images. Attempting to train on this distribution of data was very limiting in the 

type of classifier that was even possible; essentially any classifier that relied upon nearest neighbors 

would lead to a runtime error. Furthermore, the only BI-RADS scores that the model was predicting 

were 2, 3, and 5. It was evident that we needed to change strategies to one where, rather than 



predicting descriptors, we would attempt to quantify the presence of a particular feature on a spectrum 

from 0 (not present) to 1 (perfect representation of feature). 

3.2 Raw Data 

 Due primarily to privacy concerns, publicly available datasets of breast ultrasound images for 

research purposes are extremely difficult to find. The first dataset our we tried, commonly referred to as 

the BUSI dataset (Walid, Gomaa, Khaled, & Fahmy, 2020), contained too many inconsistencies, artifacts, 

and post-sonographic annotations to be considered very useful. Ultimately, our team intends to use 

images provided to us by The Mayo Clinic, although at the time of this analysis, those images were not 

yet made available. 

In the interim, the images for this analysis come from a dataset collected in 2012 from the 

UDIAT Diagnostic Centre of the Parc Taul´ı Corporation, Sabadell (Spain) with a Siemens ACUSON 

Sequoia C512 system 17L5 HD linear array transducer (8.5 MHz). The dataset consists of 163 images 

from different women with a mean image size of 760 × 570 pixels, where each of the images presented 

one or more lesions. Within the 163 lesion images, 53 were images with cancerous masses and 110 with 

benign lesions. From the malignant images, 40 were invasive ductal carcinomas, 4 were ductal 

carcinomas in situ, 2 were invasive lobular carcinomas and 7 were other unspecified malignant lesions. 

From the benign images, 65 were unspecified cysts, 39 were fibroadenomas and 6 were of another type 

of benign lesion (Yap, et al., 2018). 

3.3 Radiologic Evaluation 

 At the beginning of the project, our subject matter expert, Dr. Ellis, provided a rubric that his 

group uses to classify lesions. The rubric assigns qualitative descriptors to each of the three zones of a 

lesion (internal, marginal, and peripheral) as well as capturing the lesion’s size, vascularity, and any 

posterior features. A summary of the rubric is shown in Table 1: 



Table 4: Rubric for classifying lesions (R. Ellis, personal communication, March 9, 2021) 

Feature Low Risk Moderate Risk High Risk 

Internal Zone Oval, parallel, 
homogeneous 
hyperechoic or 
hyperechoic 

Round, hypoechoic Irregular shape, angles, 
not parallel 

Marginal Zone Well circumscribed, 
abrupt interface 

Partially circumscribed, 
echogenic halo 

Indistinct, angular, 
microlobulated, 
spiculated 

Peripheral Zone Normal tissue Shadowing, enlarged ducts, 
edema 

Spiculations, skin 
thickening, 
architectural distortion 

Posterior Features Enhancement Partial shadowing Full or majority 
shadowing 

Vascularity 
 

Absent Internal or rim vascularity  

  

The first step in our process consisted of Dr. Ellis segmenting and annotating the 163 images in 

our dataset. Each of the images was given one or more descriptors for the first four features in Table 4 

(it was not possible to accurately assess vascularity without doppler imaging, which was not available). 

In addition, Dr. Ellis also provided a BI-RADS score, assessment of malignancy, and most critically, a 

marked-up image with a border drawn around the lesion (segmentation). From this border, a ground 

truth mask was created that would be used for morphological analysis later on. Figure 2 shows examples 

of both a benign (left) and malignant (right) image, with the original image (a), the boundary of the 

lesion (b), the ground truth mask (c), and the classifications assigned by Dr. Ellis (d). 



Figure 2: Samples of annotated images. (a) Original image, (b) lesion segmentation, (c) ground truth mask, and (d) feature 
descriptions for benign lesion (left) and malignant lesion (right) 

 Benign lesion Malignant lesion 

 

 

(a) 

  
 

 

(b) 

  
 

 

(c) 

  
 

(d) 

Internal Zone: Plump oval, parallel, hypoechoic 
Marginal Zone: Circumscribed, abrupt interface 
Peripheral Zone: Normal tissue 
Posterior Features: No features 

Internal Zone: Irregular with angles, not parallel 
Marginal Zone: Indistinct, echogenic halo 
Peripheral Zone: Shadowing, architectural 
distortions 
Posterior Features: Shadowing 

3.4 Algorithm Development 

 The findings of Hong, et al. (2005) and the rubric provided by Dr. Ellis both indicated that the 

most predictive value was captured by examining the lesion margins (boundary), followed by the shape 



(oval, round, or irregular), and the orientation (parallel or not). We decided to tackle these features in 

the same order, but rather than aim for discrete categorical variables, along the lines of the BI-RADS 

guidance and the rubric, we chose to quantify features wherever possible. The advantages in doing so 

were twofold. First, since our software would ultimately be generating a numeric value for these 

features (e.g., how well circumscribed is the boundary?), converting to a categorical value would reduce 

the amount of information available to the model. Secondly, there is no universal agreement among 

radiologists regarding where, for example, the distinction should be made between “round” and “oval” 

or at what degree of rotation a “parallel” lesion becomes “not parallel”. We wanted our model to be 

able to handle all the in-between cases as well as it could handle the more obvious ones. 

3.4.1 Margin Circumscription 

 Because margin circumscription, and its related concept, abruptness, carried so much predictive 

value, it was important to quantify this as carefully and accurately as possible. One dilemma that quickly 

became evident was the outlines provided by Dr. Ellis – the ground truth – were not absolutely precise 

down to the individual pixel level, and it would be unreasonable to expect that they could be. As we 

could see in the benign lesion in Figure 2, it is often the case that there is large pixel intensity difference 

between the internal zone of a lesion and the surrounding tissue.  

In order to quantify the level of circumscription of a lesion’s margin, we introduced two new 

metrics, which will be referred to as abruptness and average maximum gradient. Both involve tracing 

around each edge pixel of the ground truth overlayed on the original image and inspecting the gradient 

in the orthogonal direction. The gradient was calculated on the normal vector (orthogonal) looking 

mostly inward but also a few pixels outward from the lesion, in the event that the outline was not 

perfectly drawn. Figure 3 shows a zoomed in version of the benign lesion in Figure 2 along with normal 

vectors for two of the points on the perimeter.  



Absent any sort of industry standard, we considered normal vectors of length 10 that looked 

inward 7 pixels and outward 3 pixels.  For abruptness, an edge pixel is deemed abrupt if it the normal 

vector contains a gradient value greater than a certain threshold – a steep edge. For our model, we used 

20 to be that threshold. The average max gradient of a lesion considers the maximum gradient of the 

normal vector of each pixel and then takes the mean value for the entire boundary.  

Figure 3: Calculation of the abruptness, based on a zoomed in image of ground truth overlaid on original ultrasound image of 
benign lesion 

 
 

3.4.2 Shape 

 Shape features were captured using a similar methodology to Romeo, et al. (2021). Pyradiomics 

is an open-source Python package capable of calculating hundreds of morphological and texture 

features of a masked image, including measures of roundness, major and minor axis length, measures of 



image homogeneity in the region of interest, and numerous other potential predictors of malignancy. A 

description of all the features extracted by Pyradiomics can be found at 

https://pyradiomics.readthedocs.io/en/latest/features.html. There were three relevant shape features 

we included in our model that are defined below: sphericity, elongation, and perimeter-to-surface ratio.  

• Sphericity refers to the ratio of the perimeter of the ROI to the perimeter of a circle with the 

same area as the ROI and is thus a measured of the roundness of the lesion. A perfectly circular 

lesion would have a sphericity of 1. 

• Elongation shows the relationship between the major axis length and minor axis length of the 

ellipse that best approximates the shape of the ROI. 

• Perimeter-to-surface ratio is simply the ratio of the perimeter of the ROI to its area. A lower 

value indicates a more compact shape (circle-like). 

 In addition to the shape features, one of the main reasons we chose to use this package is for its 

texture analysis. Characterizing the texture of a region, particularly of a relatively low-resolution image 

such as a breast ultrasound image, is difficult to do with the naked eye. The echo pattern, both inside 

the internal zone and in the peripheral zone, is used by radiologists as an indicator of potential 

malignancy, so it was important that our software might help quantify these features for use in a 

machine learning model. 

3.4.3 Orientation 

 The last major feature we wanted to include in our model was the orientation, as the BI-RADS 

standard advises that lesions which are parallel to the tissue (x-axis) have a higher likelihood of being 

benign, while those which are not parallel have a higher likelihood of being malignant. Due to the highly 

irregular shapes of some of the lesions, defining parallel vs. not parallel might not be a straightforward 

exercise. For our analysis, we used the Python OpenCV package’s fitEllipse() function to find an 

https://pyradiomics.readthedocs.io/en/latest/features.html


ellipse that best approximates the shape of the ground truth in a least-squares sense, and then 

calculated the angle between the major axis of that ellipse and the x-axis, and the deviation of that 

angle from 90 degrees (90 degrees would represent a vertical ellipse). Figure 4 shows a visual 

representation of the algorithm for the benign and malignant images we have been looking at in this 

chapter. 

Figure 4: Orientation of benign (left) and malignant (right) lesions by fitting an ellipse and calculating the angle of the major axis 

 
Angle: 79.35° 

 
Angle: 38.37° 

 

3.6 Data Analysis 

 At this point, Dr. Ellis had reviewed and annotated all of the images in our dataset. He 

determined that 28 of the original 163 images were not fit for further analysis due to the fact that the 

image quality was poor, there was more than one lesion, or there was evidence of a breast implant. This 

left 135 images to be analyzed, for which we calculated quantitative values for each of the features 

described above. In addition to abruptness, average maximum gradient, and orientation, Pyradiomics 

was able to provide 102 more morphological and texture features. 

Feature Selection 

 Due to the large number of features, we decided to reduce the number of features in our 

model. Certain features from Pyradiomics, such as the maximum, minimum, and range, seemed like 



natural candidates to be cut. These statistics were based on individual pixel values within a region of 

interest -- they would have no predictive value as our model was based on the characteristics an entire 

boundary or two-dimensional area. Furthermore, it is sometimes the case that the brightest pixels in an 

image are just outside the internal zone, outside the area we are trying to isolate but possibly included 

because of an imprecisely drawn boundary. 

 Aside from these three features, though, there were no obvious candidates for removal, so we 

looked at a pairwise correlation matrix for the rest of the Pyradiomics variables. Using a correlation 

threshold of 0.8, we were able to reduce the number of Pyradiomics variables down to a more 

reasonable 23. After considering using PCA to reduce the number of variables further still, we decided to 

keep them for model selection, in hopes of keeping the model more explainable and the possibility of 

discovering new predictors which were not yet part of BI-RADS. 

Model Selection 

 The data at this point consisted of 26 numeric variables (abruptness, maximum average 

gradient, orientation, and 23 morphological and texture variables from Pyradiomics), and we needed to 

create a model to classify each image as benign or malignant. For this task, we chose to use an open-

source machine learning Python package named PyCaret that made it relatively simple to perform all of 

the necessary tasks: accounting for the imbalance in the data (2/3 of the remaining images were of 

benign lesions, 1/3 were malignant), creating a train/test split, and calculating the best cross-validated 

model. The results of this step can be found in the next chapter. 



Chapter 4: Results 

4. 1 Introduction 

 Since the goal of the project is to determine the extent to which machine learning could assist a 

radiologist assessing a breast ultrasound image, we will first establish a baseline by examining the 

accuracy of our subject matter expert, Dr. Ellis, in classifying the images in our sample data set, split out 

by the BI-RADS scores he assigned to each one. After that, we will look at how well our algorithm is able 

to numerically represent the three most predictive features of a BUS image: marginal zone, shape, and 

orientation. Lastly, we will evaluate the accuracy of a few different classification models based on these 

three features plus a collection of textural features provided by the Pyradiomics package. 

4.2 Findings 

4.2.1 Physician Performance 

 The curated data set contained 90 images of benign lesions and 45 images of malignant lesions. 

Dr. Ellis correctly classified 91.1% of them, with a precision of 97.1% and a recall of 75.6%, as shown in 

Table 5. 

Table 5: Performance of subject matter expert for all images 

 Predicted Benign Predicted Malignant 

True Benign 89 1 

True Malignant 11 34 

 

 The most important distinction a radiologist needs to make is separating BI-RADS 3 from BI-

RADS 4a, because the protocol for anything BI-RADS 4a and above is a biopsy, while a BI-RADS 3 results 

in continued monitoring. For this reason, let us consider the physician performance just among those 



two BI-RADS scores. To review, BI-RADS 3 means that there is less than a 2% expected chance of being 

malignant and BI-RADS 4a means that there is a 2% to 9% expected probability of malignancy. Of these 

32 images, Dr. Ellis correctly classified 78.1%, with a precision of 50% and a recall of 14.3%, as shown in 

Table 6.  

Table 6: Performance of subject matter expert on BI-RADS 3 or 4a 

 Predicted Benign Predicted Malignant 

True Benign 24 1 

True Malignant 6 1 

  

4.2.1 Feature accuracy 

 In the methodology section, we described in detailed our process for quantifying the three main 

features used to predict malignancy in a breast ultrasound image: margins, morphology, and 

orientation. The rubric that Dr. Ellis uses to help classify lesions consists of categorical variables, and is 

included in Appendix A. The following figures display the relationships between the descriptive 

annotations provided by Dr. Ellis and the numeric representations of them in our model. 

4.2.1.1 Abruptness and Average Maximum Gradient 

 



Figure 5: Abruptness vs. Marginal Zone ACR 

 

 

Figure 6: Average Maximum Gradient vs. Marginal Zone ACR 

 

 

4.2.1.2 Morphology 

 There were two characterizations of shape in the rubric, “ShapeTS” and “ShapeACR”, with some 

overlapping values. Our model includes three morphological features: sphericity, elongation, and 

perimeter-surface ratio.  Figures 3 and 4 show the comparison between sphericity and the categorical 

variables from the rubric. 



Figure 7: Sphericity vs. ShapeTS 

 

 

Figure 8: Sphericity vs. ShapeACR 

 

 

4.2.1.3 Orientation 

 The rubric contains only one feature for orientation, with values of “parallel” or “not parallel”. 

Figure 9 plots the distribution of quantitative orientation values as compared to the label assigned by Dr. 

Ellis. 



Figure 9: Orientation (model) vs. Orientation (rubric) 

 

 

4.2.2 Classification Models 

 Pycaret generated statistics on 13 different types of models based on a training set size of 94 

images, with the remaining 41 images being used for validation. The accuracy of the first several models 

on the list was very similar, but there seemed to be a small separation of the top three models from the 

rest. Table 7 shows the performance of each of the models: 



Table 7: Classification model candidates 

 

4.2.2.1 Ridge Classifier 

 Based on accuracy, Pycaret identified the ridge classifier to be the best performing model. It was 

able to accurately predict 80.5% of the 41 images in the validation set, including 6 of the 7 images that 

were BI-RADS 3 or BI-RADS 4a.  

Table 8: Ridge classifier on validation set 

 Predicted Benign Predicted Malignant 

True Benign 19 6 

True Malignant 2 14 

 

 Interestingly, the most important features in the ridge classifier were skewness (a measure of 

how skewed the distribution of pixel intensities are in the ROI), sphericity, and entropy (a representation 

of heterogeneity in the texture). 



Figure 10: Ridge classifier feature importance 

 

4.2.2.2 Extra Trees Classifier 

 The extra trees classification model performed very similarly to the ridge classifier, accurately 

predicting 78.0% of the images in the test set, including 5 of the 7 BI-RADS 3 and BI-RADS 4a images. 

Table 9: Extra trees classifier on validation set 

 Predicted Benign Predicted Malignant 

True Benign 22 3 

True Malignant 6 10 

 

 In terms of feature importance, this model more closely matches the BI-RADS guidance, with 

shape and margin characterization features hovering near the top of the list. 



Figure 11: Extra trees classifier feature importance 

 

 

4.2.2.3 Random Forest Classifier 

 The last model we considered was the random forest classifier. It had a much lower accuracy on 

the validation set than either the ridge classifier or the extra trees classifier, predicting only 28 of the 41 

images correctly (68.3%), including only 3 of the 7 BI-RADS 3 and BI-RADS 4a images. 

Table 10: Random forest classifier on validation set 

 Predicted Benign Predicted Malignant 

True Benign 20 5 

True Malignant 8 8 

 

 As with the other two models, sphericity (shape) ranked very highly in feature importance, along 

with skewness. Figure 12 shows the top ten features and their relative importance. 



Figure 12: Random forest classifier feature importance 

 

 

4.3 Conclusion 

 Dr Ellis’s analysis of the data set showed that while a human subject matter expert is very good 

at predicting malignancy, there is room for improvement. As one would expect with borderline cases 

(BI-RADS 3 and BI-RADS 4a), the accuracy decreases considerably. This is true of the algorithmic 

approach as well, performing much better on the more clear-cut cases (BI-RADS 1, 2, 4b, 4c, and 5) that 

on the more difficult ones. 

 According to the literature and standard protocol, the best predictors of malignancy are lesion 

margins, shape, and orientation. Margin and shape both proved predictive in this dataset, depending on 

the algorithm, but orientation was much less so, at least by our quantification of this feature. Our 

analysis also suggests that skewness and entropy, or perhaps other measures of echotexture, also show 

potential as predictors of malignancy. 



The ridge classifier and the extra trees classifier both performed well at predicting malignancy of 

the validation set, and despite the very small sample size, even showed hints that they could assist in 

separating the critical BI-RADS 3 and BI-RADS 4a lesions. The extra trees classifier also provides a 

probability score, allowing us to set a threshold above which we are confident in our prediction. The 

confusion matrix above is based on a threshold of 0.50, but if we increase that threshold even slightly, 

the accuracy rate increases considerably. Figure 13, below, plots the accuracy and number of samples 

that qualify for the extra trees classifier at different thresholds. The number above each point 

represents the number of images that reach a particular threshold. So, this algorithm correctly classified 

all 17 images (out of 41 total) in the validation set that met a minimum probably threshold of 0.62. 

Figure 13: Extra trees classifier threshold vs. accuracy 

 

Chapter 5: Discussion 

5.1 Introduction 

 This chapter begins by providing some in depth discussion of the performance of both the 

radiologist and the machine learning model, including recommendations for how to best combine the 



relative strengths of human evaluation and computer analysis. Next, we offer up some ideas for future 

research, depending on the availability of a richer data set that we expect to be receiving from Mayo 

shortly after this paper was written. We conclude by describing a forward-looking vision of more 

interactive ultrasound evaluation process, in which a radiologist is provided with the images, editable 

segmentations of those images, and the system’s interpretation of the segmented images using the 

algorithms detailed in this paper. 

5.2 Summary of Findings 

  Both Dr. Ellis and the machine learning models described above did a commendable job of 

classifying the images in the data set, though there was room for improvement in each case. Lesion 

shape and margins both proved to be important features for prediction, but orientation was not as 

important a predictor in this data set as echotexture. The best performing machine learning models 

were the ridge classifier and the extra trees classifier. The ridge classifier showed better recall, which is 

critical in cancer detection, but the extra trees classifier has the advantage of providing a probability 

threshold with its predictions, which end users can utilize to make better judgment calls as they see fit. 

5.3 Discussion 

Before getting too far into the discussion, it is worth reiterating that the number of images in 

this data set was far less than ideal and, according to Dr. Ellis, the quality of the images also was not up 

to current standards. The original plan was to have several hundred (or more) images provided by Mayo 

and annotated by Dr. Ellis, but the timeline of receiving these images did not match up with the timeline 

of this capstone. Nonetheless, we feel that the margin, shape, orientation, and texture algorithms we 

developed would work equally well and be easily transferable to a larger data set. A larger data set will 

also allow us to better train the model and potentially pick up more of the features from the rubric, 

many of which may be predictive. 



It is very reasonable to look at the 91% of images that Dr. Ellis was able to correctly classify and 

conclude that an expert radiologist does a very acceptable job of separating out the malignant lesions 

from the benign ones. The real question we need to ask, though, is whether additional input from an AI 

system would improve that number even more. In particular, given the severe consequences of a false 

negative (a cancerous lesion that was not classified as such), could the computer model assist a human a 

human in detecting these misclassifications? 

The best performing model in our analysis was the ridge classifier, and while the overall 

accuracy was lower than the radiologist (80.5%) the recall was higher (87.5% vs. 75.6%), suggesting that 

the model sacrificed some false positives for fewer false negatives. While there are downsides to both, 

as discussed above, the misclassification of a malignant lesion has a potentially life-threatening 

outcome. The fact that it accurately predicted 6 of the 7 BI-RADS 3 and BI-RADS 4a images – the line 

between definite biopsy and follow-up ultrasound -- provides further hope that the algorithm might 

help resolve the most difficult cases. The extra trees classifier performed about as well as the ridge 

classifier and comes with the added benefit of providing a probability. This information could be helpful 

to a radiologist by providing a numerical estimate of how much faith to put in the recommendations 

produced by the model, leaving it up to the radiologist to decide whether to switch their diagnosis in 

cases where there is disagreement. 

Lastly, there is a major opportunity to update the rubric from one that is qualitative and 

descriptive to one that is quantitative. The most salient example is the shape feature, where the 

radiologist is asked to select whether a lesion is round, oval (flat or plump) or irregular. This is precisely 

the sort of subjective judgment that might vary between radiologists, or even for the same radiologist 

on different days. A quantitative metric like sphericity takes away a lot of judgment calls by converting 

the shape to an objective number, and perhaps getting rid of the descriptor altogether. For features that 

are difficult to ascertain to the human eye, like heterogeneity of pixel intensity, the computer is once 



again at an advantage of being able to easily translating this into multiple numbers, which are not at the 

whims of what a human is focusing on. 

5.4 Suggestions for Future Research 

 The timeline of a semester-long capstone project necessarily limits the overall scope of a project 

such as this one. For practical reasons, we were only able to take a somewhat streamlined path from 

inception (135 raw images) to conclusion (machine learning model). We recognize that there were 

several alternate routes which warrant consideration, described below. 

• Incorporate patient information – All of the data in this set was deidentified, but radiologists 

routinely use contextual information (previous imagery, age, family history, etc.) to help 

interpret an ultrasound image.  Progression of a lesion over time is certainly a key consideration 

that would make sense to add to a model if the data was available. 

• Multiple images per case – Our research team only had access to a single image for each lesion, 

sometimes of dubious quality. In practice, radiologists have access to multiple transverse and 

longitudinal images for each case, along with doppler images that better capture vascularity (a 

key predictor of malignancy). We feel the accuracy of our model could potentially be improved 

by analyzing images as a group. 

• Larger data sets – Machine learning models perform better when trained on as large a data set 

as possible. Our set consisted of only 135 images, with a training set of 94 images and a 

validation set of 41 images. Many of the features in the rubric were not even identified in any of 

the images by Dr. Ellis, making it impossible to train the software on them.  

• Automating the ground truth – A subject matter expert segmenting the images was a critical 

prerequisite for our analysis, and many of our quantitative metrics were highly dependent on 

the precision of the lesion margins. It is impractical to have images manually segmented at scale, 



so it would be interesting to see how a deep learning model performed at this task. Some 

nascent research in this area has already been done, but the limited size of data sets is a major 

impediment. 

5.5 Conclusion 

 Computer-assisted diagnosis shows considerable promise, even from a limited data set such as 

the one in our analysis. While an expert radiologist is able to achieve a very high classification accuracy, 

a trained model is almost able to keep up and, more importantly, perform well on borderline images. 

We can very easily imagine an enhanced system where the software provides a malignancy prediction 

for a given ultrasound image, along with numerical representations of the margins, shape, orientation, 

echotexture. In this system, the radiologist would be able to update the boundaries of the lesion 

manually, and these metrics would automatically recalculate, along with the probability of malignancy. 

This interactive system will hopefully improve the lesion classification accuracy for both benign and 

malignant lesions for breast ultrasound patients, especially in the gray area between BI-RADS 3 and BI-

RADS 4a. 
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Appendix A: Code 

The code for this project can be found at the following location: https://github.com/adsilb/DS785 

  

https://github.com/adsilb/DS785


Appendix B: Ultrasound Rubric 

The following table shows the rubric that Dr. Ellis and his team use to classify breast ultrasound lesions. 

Some features have a suffix of “ACR”, which stands for American College of Radiology, dating to 2012. 

Other features have a suffix of “TS”, which stands for Tom Stavros, a radiologist who developed 

refinements to the 2012 ACR rubric. 

Feature Name Available Values 

Peripheral Zone ACR Duct changes; Cooper ligament changes; Edema; Architectural 
Distortion; Skin Thickening; Skin retraction/irregularity 

Peripheral Zone TS Normal tissue; Shadowing; Enlarged ducts; Enlarged ducts with 
calcifications; Thin spiculations; Thick spiculations 
 

Marginal Zone ACR Circumscribed; Not circumscribed; Indistinct; Angular; Microlobulated; 
Spiculated 

Boundary Zone ACR Abrupt interface; Echogenic halo 

Marginal Boundary Zone TS Well circumscribed; Partial circumscribed; Well circ w/ uniform thick 
iso or hyperechoic capsule; Well circ w/o thin hyper rim; Indistinct; 
Thick echogenic rim; Short hyper or hypo echogenic spicules 

Shape ACR Oval; Round; Irregular 

Shape TS Flat oval; Plump oval; Round; Irregular w/o angles & parallel; Irregular 
w/o angles & not parallel; Irregular w/ angles 

Orientation Parallel; Not parallel 

Echo Pattern ACR Anechoic; Hyperechoic; Complex cystic/solid; Hypoechoic; Isoechoic; 
Heterogeneous 

Echo Pattern TS Homogeneous hyperechoic; Complex cystic/solid; Mild hypoechoic; 
Heterogeneous w/o calcs; Heterogeneous w/ calcs; Severe/Marked 
hypoechoic 

Posterior Features ACR No features; Enhancement; Shadowing; Combined pattern 

Posterior Features TS Enhancement; No features; Mixed, mostly enhanced & partially 
shadowing; Mixed, partially enhanced & mostly shadowing; Mixed, 
normal & shadowing; Shadowing 

Vascularity ACR Absent; Internal vascularity; Rim vascularity 

  



Appendix C: Data Set Annotations 

The following table shows the annotations provided by Dr. Ellis, his prediction of malignancy, the BI-RADS score he assigned, and the actual 

malignancy. 

 
Peripheral Zone Marginal Zone Internal Zone       

Sample 
name 

Peripheral 
Zone ACR 

Peripheral Zone 
TS 

Marginal Zone 
ACR 

Boundary Zone 
ACR 

Marginal 
Boundary Zone 
TS 

Shape 
ACR  

Shape 
TS 

Orient
ation 

Echo 
Pattern 
ACR 

Echo Pattern 
TS 

Posterior 
Features ACR 

Posterior 
Features 
TS 

Histology 
Predicted 

BI-
RADS 

Histology 
Actual 

PA1   Normal tissue Not 
circumscribed 

Abrupt 
interface 

Partial 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA2   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA3   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Round  Round Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Mixed, 
mostly 
enhanced 
& partially 
shadowin
g 

Benign 2 Benign 

PA4   Normal tissue Circumscribed  Abrupt 
interface 

Partial 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA5   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Round  Round Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Mixed, 
mostly 
enhanced 
& partially 
shadowin
g 

Benign 2 Benign 

PA6   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA7   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA8   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Hyperechoi
c 

Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA9   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA10   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA12   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Mixed, 
partially 
enhanced 
& mostly 
shadowin
g 

Benign 2 Benign 

PA14   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Heterogene
ous 

Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 



PA15   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA16   Normal tissue Microlobulated Abrupt 
interface 

Short hyper or 
hypo echogenic 
spicuales 

Round  Round Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Malignant 4a Benign 

PA17   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA18   Thin spiculations Indistinct Echogenic halo Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
not 
parallel 

Not 
parall
el 

Hypoechoic Mild 
hypoechoic 

Combined 
pattern 

Mixed, 
normal & 
shadowin
g 

Malignant 5 Malignant 

PA19   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA20   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 or 
4a 

Benign 

PA21   Normal tissue Circumscribed  Echogenic halo Thick echogenic 
rim 

Oval Round Not 
parall
el 

Hypoechoic Mild 
hypoechoic 

Enhancement Enhancem
ent 

Benign 3 Benign 

PA22   Normal tissue Indistinct Abrupt 
interface 

Indistinct  Irregul
ar 

Irregular 
w/ 
angles 

Not 
parall
el 

Complex 
cystic/solid 

Complex 
cystic/solid 

Enhancement Enhancem
ent 

Benign 4b Benign 

PA23   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Malignant 

PA24   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 Malignant 

PA25   Normal tissue Angular Echogenic halo Partial 
circumscribed 

Irregul
ar 

Irregular w/o 
angles & parallel  

Hypoechoic Mild 
hypoechoic 

Shadowing Shadowin
g 

Benign 4b Malignant 

PA26   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA27 Architectural 
distortion 

Shadowing Indistinct Echogenic halo Indistinct  Oval Plump 
oval 

Not 
parall
el 

Hyperechoi
c 

Mild 
hypoechoic 

Shadowing Mixed, 
normal & 
shadowin
g 

Malignant 4c Malignant 

PA28 Bad 
Image 

Architectural distortion Microlobulated Indistinct  Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 0 Malignant 

PA29 Architectural 
distortion 

Thick spiculations Indistinct Echogenic halo Indistinct  Irregul
ar 

Irregular 
w/ 
angles 

Not 
parall
el 

Hypoechoic Severe/Mark
ed 
hypoechoic 

Shadowing Shadowin
g 

Malignant 5 Malignant 

PA30 Architectural 
distortion 

Thick spiculations Indistinct Echogenic halo Indistinct  Irregul
ar 

Irregular 
w/ 
angles 

Not 
parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Malignant 5 Malignant 

PA31 Architectural 
distortion 

Thick spiculations Indistinct 
 

Indistinct  Irregul
ar 

Irregular 
w/ 
angles 

Not 
parall
el 

Hyperechoi
c 

Severe/Mark
ed 
hypoechoic 

No features No 
features 

Malignant 4b Malignant 

PA32   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA33   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA34 Bad 
Image 

  Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Not 
parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA35   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 



PA36 Bad 
Image 

      
 

    
      

Benign 
 

Benign 

PA37   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA38   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA39   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA40   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA41   Normal tissue Microlobulated Echogenic halo Partial 
circumscribed 

Oval Flat oval  Parall
el 

Complex 
cystic/solid 

Complex 
cystic/solid 

Enhancement Enhancem
ent 

Benign 4a Malignant 

PA42   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA43   Normal tissue Indistinct 
 

Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
not 
parallel 

Not 
parall
el 

Hypoechoic Mild 
hypoechoic 

Shadowing Shadowin
g 

Malignant 5 Malignant 

PA44   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 4a Malignant 

PA45   Normal tissue Circumscribed  Abrupt 
interface 

Partial 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

Enhancement Enhancem
ent 

Benign 4a Malignant 

PA46 Architectural 
distortion 

Thin spiculations Indistinct Echogenic halo Indistinct  Round  Round Not 
parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Malignant 4b Malignant 

PA47   Normal tissue Microlobulated Abrupt 
interface 

Partial 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

Enhancement Enhancem
ent 

Benign 4a Malignant 

PA49 Architectural distortion Indistinct Echogenic halo Indistinct  Oval Plump 
oval 

Not 
parall
el 

Hypoechoic Mild 
hypoechoic 

Shadowing Shadowin
g 

Malignant 5 Malignant 

PA50   Normal tissue Microlobulated Abrupt 
interface 

Partial 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

Combined 
pattern 

Mixed, 
mostly 
enhanced 
& partially 
shadowin
g 

Benign 4a Malignant 

PA51   Normal tissue Circumscribed  Echogenic halo Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

Enhancement Enhancem
ent 

Benign 3 Benign 

PA52   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA53   Normal tissue Indistinct Echogenic halo Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
not 
parallel 

Not 
parall
el 

Heterogene
ous 

Heterogene
ous w/o 
calcs 

Shadowing Shadowin
g 

Malignant 4b Malignant 

PA54   Normal tissue Microlobulated Indistinct  Round  Round Not 
parall
el 

Heterogene
ous 

Heterogene
ous w/o 
calcs 

No features No 
features 

Malignant 4b Malignant 

PA55 Architectural 
distortion 

Thick spiculations Indistinct 
 

Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
not 
parallel 

Not 
parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Shadowing Shadowin
g 

Malignant 5 Malignant 

PA56   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA57 Architectural 
distortion 

Thick spiculations Indistinct Echogenic halo Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 

Not 
parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Shadowing Shadowin
g 

Malignant 4c Malignant 



not 
parallel 

PA58   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA59   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA61   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA62   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA63   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA64   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA65   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA66   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA67   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA68   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA69   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA70   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA71   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA72   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA73   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA74   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA76   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA77   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA78   Normal tissue Indistinct 
 

Partial 
circumscribed 

Irregul
ar 

Irregular 
w/o 
angles & 
parallel  

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 4a Benign 

PA79   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 4a Benign 

PA80   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA83   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA84 Architectural 
distortion 

Shadowing   Echogenic halo Partial 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Shadowing Shadowin
g 

Benign 4a Benign 



PA85   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA86   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

Enhancement Enhancem
ent 

Benign 3 Benign 

PA87   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA89   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA91   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA92   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA93   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 3 Benign 

PA94     Microlobulated Indistinct  Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 4a Benign 

PA95   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA96   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA97   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA98   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Round  Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA102   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA103   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Round  Round Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA104   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA105   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA106   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA109   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA110   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA112   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA113   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA114   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA115   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA116   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 



PA117   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA118   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA119   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA120   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA121   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA122   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA124   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Round  Round Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA125   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Round  Round Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA126   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA127   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA128   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA129   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA130   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

No features No 
features 

Benign 2 Benign 

PA131   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Plump 
oval 

Not 
parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Benign 

PA132 Architectural 
distortion 

Shadowing Indistinct 
 

Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
parallel  

Not 
parall
el 

Hypoechoic Mild 
hypoechoic 

Shadowing Shadowin
g 

Malignant 5 Malignant 

PA133     Microlobulated Echogenic halo Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
parallel  

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Malignant 4b Malignant 

PA134   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Enhancement Enhancem
ent 

Benign 2 Malignant 

PA136   Thin spiculations Angular Echogenic halo Indistinct  Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

Shadowing Shadowin
g 

Malignant 4b Malignant 

PA137   Normal tissue   
 

    
      

Benign 1 Malignant 

PA140 Architectural 
distortion 

Thin spiculations Microlobulated Echogenic halo Indistinct  Oval Plump 
oval 

Not 
parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Shadowing Shadowin
g 

Malignant 4c Malignant 



PA141 Architectural 
distortion 

Thick spiculations Angular 
 

Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
not 
parallel 

Not 
parall
el 

Hypoechoic Mild 
hypoechoic 

Shadowing Shadowin
g 

Malignant 5 Malignant 

PA142 Architectural 
distortion 

Thin spiculations Angular 
 

Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
not 
parallel 

Not 
parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Shadowing Shadowin
g 

Malignant 5 Malignant 

PA143 Architectural 
distortion 

Thick spiculations Angular 
 

Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
not 
parallel 

Not 
parall
el 

Hypoechoic Mild 
hypoechoic 

Shadowing Shadowin
g 

Malignant 5 Malignant 

PA144 Architectural 
distortion 

Thin spiculations Angular 
 

Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
not 
parallel 

Not 
parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Shadowing Shadowin
g 

Malignant 5 Malignant 

PA145 Architectural 
distortion 

Thin spiculations Angular 
 

Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
not 
parallel 

Not 
parall
el 

Hypoechoic Mild 
hypoechoic 

Shadowing Shadowin
g 

Malignant 5 Malignant 

PA147    Normal tissue Microlobulated Echogenic halo Partial 
circumscribed 

Round  Round 
 

Hypoechoic Mild hypoechoic No 
features 

Malignant 4c Malignant 

PA295 Architectural distortion Indistinct Echogenic halo Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
not 
parallel 

Not 
parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Shadowing Shadowin
g 

Malignant 5 Malignant 

PA296   Thin spiculations Indistinct 
 

Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
parallel  

Not 
parall
el 

Hypoechoic Mild 
hypoechoic 

Shadowing Shadowin
g 

Malignant 4b Malignant 

PA297 Architectural 
distortion 

Thick spiculations Angular Echogenic halo Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
not 
parallel 

Not 
parall
el 

Hypoechoic Mild 
hypoechoic 

Shadowing Shadowin
g 

Malignant 5 Malignant 

PA298 Architectural 
distortion 

Thin spiculations Indistinct 
 

Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
parallel  

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Malignant 5 Malignant 

PA299 Architectural 
distortion 

Thin spiculations Indistinct Echogenic halo Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
not 
parallel 

Not 
parall
el 

Hypoechoic Mild 
hypoechoic 

Shadowing Shadowin
g 

Malignant 5 Malignant 

PA300     Angular 
 

Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
parallel  

Parall
el 

Hypoechoic Mild 
hypoechoic 

Shadowing Shadowin
g 

Malignant 4b Malignant 

PA301   Shadowing Indistinct 
 

Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
parallel  

Parall
el 

Hypoechoic Mild 
hypoechoic 

Shadowing Shadowin
g 

Malignant 4b Malignant 

PA302   Normal tissue Microlobulated Echogenic halo Well circ w/ 
uniform thick iso 
or hyperechoic 
capsule  

Irregul
ar 

Irregular 
w/o 
angles & 
parallel  

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Malignant 5 Malignant 



PA304   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 2 Malignant 

PA305   Normal tissue Microlobulated Partial 
circumscribed 

Oval Plump 
oval 

Parall
el 

Complex 
cystic/solid 

Complex 
cystic/solid 

Enhancement Enhancem
ent 

Malignant 4a Malignant 

PA306 Architectural distortion Angular Echogenic halo Indistinct  Irregul
ar 

Irregular 
w/ 
angles 

Not 
parall
el 

Hypoechoic Mild 
hypoechoic 

Shadowing Shadowin
g 

Malignant 5 Malignant 

PA307   Normal tissue Circumscribed  Abrupt 
interface 

Well 
circumscribed 

Oval Flat oval  Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Benign 2 Malignant 

PA308 Architectural 
distortion 

Thick spiculations Indistinct Echogenic halo Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
not 
parallel 

Not 
parall
el 

Anechoic Severe/Mark
ed 
hypoechoic 

Shadowing Shadowin
g 

Malignant 5 Malignant 

PA309     Indistinct Echogenic halo Indistinct  Irregul
ar 

Irregular 
w/o 
angles & 
not 
parallel 

Not 
parall
el 

Hypoechoic Mild 
hypoechoic 

Shadowing Shadowin
g 

Malignant 4c Malignant 

PA310   Normal tissue Microlobulated Abrupt 
interface 

Indistinct  Oval Plump 
oval 

Parall
el 

Hypoechoic Mild 
hypoechoic 

No features No 
features 

Malignant 4b Malignant 

  


